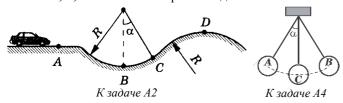
Задание №9-06 Динамика. Движение по окружности


Задачи простые

A1*. Сформулируйте требования к выбору направления координатных осей в случае описания вращения тела в а) горизонтальной и б) вертикальной плоскостях.

 $A2^{\circ *}$. Автомобиль массой m=1000 кг движется со скоростью V=60 км/ч по дороге, профиль которой показан на рисунке. Определить силу давления P автомобиля на дорогу в точках A, B, C, D, если R=200 м, $\alpha=30^{\circ}$. Какой должна быть скорость автомобиля V_{θ} , чтобы он не оказывал давления на дорогу в точке D?

АЗ*. Летчик массой $m = 70 \ \kappa z$ описывает на самолете "мертвую петлю" радиусом $R = 100 \ m$. Скорость самолета $V = 180 \ \kappa m/ч$. С какой силой прижимается летчик к сиденью в верхней и нижней точках петли?

 $A4^{\circ *}$. Тело, подвешенное на нити, совершает колебания в вертикальной плоскости. Указать направления ускорения тела в точках A, B, C. Точки A и B крайние в движении.

Задачи средние

Б1. При каком соотношении масс два тела, связанные идеальной нитью, могут вращаться с одинаковой угловой скоростью на гладкой горизонтальной поверхности, если ось вращения делит нить в отношении 1:5?

Б2. Подвешенный на идеальной нити длиной \boldsymbol{l} шарик равномерно вращается в горизонтальной плоскости. Угол между нитью и вертикалью $\boldsymbol{\alpha}$. Найдите время полного оборота шарика.

 63^* . Подвешенный на идеальной нити длиной $l=30\ cm$ шарик вращается в горизонтальной плоскости с периодом обращения $T=1\ c$. Угол между нитью и вертикалью $\alpha=30^\circ$. По этим данным вычислите ускорение свободного падения.

Б4. Тело массой m подвешивают на идеальной пружине жесткостью k и первоначальной длиной l_0 . Затем тело раскручивают с угловой скоростью ω в горизонтальной плоскости. Определите возникающее при этом удлинение пружины M

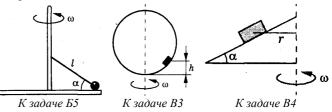
 $\overline{\text{B5}^{\circ}}$ *. Круглая платформа вращается вокруг вертикальной оси с угловой скоростью ω . На платформе находится шарик массой m, прикрепленный к оси платформы идеальной нитью длиной l. Угол наклона нити к платформе равен ω . Найдите силу натяжения нити T и силу давления P шарика на платформу. Трение отсутствует.

Б6. На горизонтально вращающемся столике укреплён вертикальный стержень, к вершине которого привязана нить. К концу нити прикреплён шарик массой m. С какой угловой скоростью вращается столик, если нить составляет с вертикалью угол α ? Длина нити I, расстояние от стержня до оси вращения столика R.

Б7*. С какой наибольшей скоростью может двигаться автомобиль на повороте радиусом R = 10 м, чтобы не возникло проскальзывание? Коэффициент трения колес автомобиля о землю $\mu = 0.8$.

Б8. Шарик массой \dot{m} , подвешенный на нити длиной l, отклонили на некоторый угол и отпустили. Определить силу натяжения нити в момент прохождения шариком положения равновесия, если его скорость в этой точке V.

°- задачи с рисунком, *- задачи для решения дома


69*. Груз на длинной нити может совершать колебания в вертикальной плоскости, отклоняясь на угол а от вертикали (математический маятник). Этот же груз может вращаться по окружности, описывая конус (конический маятник). В каком случае натяжение нити, отклоненной на угол α от вертикали, будет больше?

Задачи сложные

В1. Тело массой m находится на горизонтальном диске на расстоянии R от его оси. Диск начинает раскручиваться с малым ускорением β . Постройте график зависимости составляющей силы трения в радиальном направлении, действующей на тело, от угловой скорости вращения диска. В какой момент времени тело начнёт соскальзывать, если коэффициент трения равен μ ?

В2. На диске, который может вращаться вокруг вертикальной оси, лежит шайба массой $m = 100 \, z$. Шайба соединена идеальной пружиной с осью диска. Если частота вращения диска меньше $n_I = 2 \, c^{-I}$, то пружина находится в недеформированном состоянии. Если же число оборотов $n_2 = 5 \, c^{-I}$, то пружина удлиняется вдвое. Определите жесткость пружины.

 $B3^{\circ *}$. Полая сфера радиусом $\emph{\textbf{R}}$ вращается вокруг вертикального диаметра с постоянной угловой скоростью ω . Вместе со сферой на ее внутренней поверхности движется небольшая шайба, находящаяся на высоте $\emph{\textbf{h}}$. Определите минимальное значение коэффициента трения μ , при котором это возможно.

 $B4^{\circ *}$. На наклонной плоскости с углом наклона α лежит тело. Плоскость равномерно вращается вокруг вертикальной оси с угловой скоростью ω . Расстояние от тела до оси вращения равно r. Найти наименьший коэффициент трения, при котором тело покоится на вращающейся наклонной плоскости.

В5. Двигающийся с постоянной скоростью автомобиль должен избежать столкновения со стеной перпендикулярной его движению. Что выгоднее - тормозить или поворачивать?

В6. Велосипедист движется по горизонтальному закруглению, отклонившись от вертикали на угол $\alpha = 23^{\circ}$. Оцените возможные значения для коэффициента трения колес о поверхность дороги.

В7*. Определить, с какой максимальной скоростью может двигаться велосипедист по наклонному треку, если коэффициент трения между шинами и треком $\mu=0.2$. Угол наклона трека $\alpha=45^{\circ}$, радиус закругления R=30 м.

В8. Поезд движется по закруглению радиусом $800 \, \text{м}$ со скоростью $72 \, \kappa \text{м/4}$. Определить, на сколько внешний рельс должен быть выше внутреннего, чтобы на колёсах не возникало бокового усилия. Расстояние между рельсами $1.5 \, \text{м}$. В9. Определить скорость, с которой должен двигаться мотоциклист по вертикальной цилиндрической стенке, имеющей диаметр $D = 20 \, \text{м}$, чтобы не соскользнуть вниз. Коэффициент трения $\mu = 0.8$.

В10*. На гладком столе лежит кольцо массой m и радиусом R. Кольцо сделано из проволоки, выдерживающей максимальное натяжение T_{θ} . До какой угловой скорости ω нужно раскрутить кольцо, чтобы оно разорвалось?

Задание №9-06 Динамика. Движение по окружности

В11. На цилиндр радиуса R одето равномерно растянутое резиновое кольцо массы т. Длина кольца в нерастянутом состоянии равна πR , жёсткость кольца – k. Цилиндр начинают раскручивать с постоянным угловым ускорением В. Через какое время кольцо начнёт проскальзывать по цилиндру, если коэффициент трения кольца о цилиндр равен µ? Чему будет равна при этом угловая скорость кольца?

В12. Тело, подвешенное на идеальной нити (идеальном стержне) длины l_{θ} , может вращаться в вертикальной плоскости. Какова должна быть скорость тела в верхней точке, чтобы оно смогло сделать полный оборот? Найти силу натяжения нити (стержня), нормальное, тангенциальное и полное ускорения тела в момент, когда нить составляет с вертикалью произвольный угол α , а скорость тела равна V.

Теория

- 1. Г.Я. Мякишев Механика. §§ 1.26-1.28, 4.4-4.5.
- 2. Г.С. Ландсберг Элементарный учебник физики Т.1. §§ 25-27, 115-122.
- 3. Е.И. Бутиков, А.С. Кондратьев Физика для углублённого изучения. Т.1. Механика. §§ 8, 11.

°- задачи с рисунком, *- задачи для решения дома

ОТВЕТЫ

A2.
$$P_A = mg = 10^4 \text{ H}$$
; $P_B = m(g + V^2/R) = 1.2 \cdot 10^4 \text{ H}$; $P_C = m(g\cos\alpha + V^2/R) = 1.1 \cdot 10^4 \text{ H}$; $P_D = m(g - V^2/R) = 8.4 \cdot 10^3 \text{ H}$; $V_0 = \sqrt{gR} = 44.8 \text{ m/c}$.

A3.
$$P_B = m(V^2/R - g) \approx 1050 \text{ H}, P_H = m(g + V^2/R) \approx 2450 \text{ H}.$$

E2.
$$T = 2\pi \sqrt{l \cos \alpha / g}$$
.

$$Б3. \approx 10.26 \text{ м/c}^2.$$

$$54. \quad \Delta l = \frac{4\pi^2 l_0 n^2 m}{k - 4\pi^2 n^2 m}$$

Б5.
$$T = m\omega^2 l$$
, $F_{\mathcal{A}} = m(g-\omega^2 l \sin \alpha)$.

$$66. \quad \omega = \sqrt{\frac{g \, tg \, \alpha}{R + l \sin \alpha}}.$$

$$FF$$
 For $V = \sqrt{\mu gR} \approx 9 \, m/c$.

Б8.
$$T = m(g + V^2/l)$$
.

Б9. $T_M/T_K = \cos^2\alpha$, натяжение больше в случае конического маятника.

B1.
$$t = \sqrt{\mu g/R\beta^2}$$
.

B2.
$$k = 4\pi^2 m (2n_2^2 - n_1^2) \approx 82 \text{ H/m}.$$

B3.
$$\mu = \frac{g - \omega^2(R - h)}{g + \omega^2(R + h)} \sqrt{\frac{R + h}{R - h}}$$

B4.
$$\mu \ge \frac{g \sin \alpha + \omega^2 R \cos \alpha}{g \cos \alpha - \omega^2 R \sin \alpha}$$
.

B6.
$$\mu \ge tg\alpha \approx 0.4$$

B7.
$$V = \sqrt{gR \frac{tg \alpha + \mu}{1 - \mu tg \alpha}} = 21 \text{ m/c}.$$

B8.
$$h = V^2 l/gR$$

B9.
$$V = \sqrt{\frac{Dg}{2u}} = 11 \,\text{m/c}$$

B10
$$\omega = \sqrt{\frac{2\pi T_0}{mR}}$$

B10
$$\omega = \sqrt{\frac{Dg}{2\mu}} = 11 \, \text{m/c}.$$
B10 $\omega = \sqrt{\frac{2\pi T_0}{mR}}.$
B11 $t = \sqrt{\frac{2\pi^2 k}{m\beta^2 R} - \frac{1}{\beta \mu}}, \omega = \sqrt{\frac{2\pi^2 k}{mR} - \frac{\beta}{\mu}}.$

B12. Нить:
$$V = \sqrt{gl_0}$$
, стержень: $V = 0$;

$$a_n = V^2/l_0$$
, $a_{\tau} = g \cdot \sin \alpha$, $T = mV^2/l_0 + mg \cdot \cos \alpha$.